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1. INTRODUCTION 

The concept of fuzzy sets was introduced initially by Zadeh [26] in 1965. Since then, to use this concept 

in topology and analysis many authors have expansively developed the theory of fuzzy sets and its applications. 

In 1975, Karmosil and Michalek [16] introduced the concept of a fuzzy metric space based on fuzzy sets, 

Especially, Deng [8], Erceg [9], kaleva and Seikkala [15], Kramosil and Michalek [16] have introduced the 

concept of fuzzy metric spaces in different ways. This notion was further modified by George and Veermani 

[11] with the help of t-norms. Many authors made use of the definition of a fuzzy metric space in proving fixed 

point theorems. In 1976, Jungck [13] established common fixed point theorems for commuting maps 

generalizing the Banach's fixed point theorem. Sessa [21] defined a generalization of commutativity, which is 

called weak commutativity. Further Jungck [14] introduced more generalized commutativity, so called 

compatibility. Mishra et. al. [17] introduced the concept of compatibility in fuzzy metric spaces.  

Atanassov [1-5] introduced the notion of Intuitionistic fuzzy sets and developed its theory. Park [19] 

using the idea of intuitionistic fuzzy sets to define the notion of intuionistic fuzzy metric spaces with the help of 

continuous t-norm and continuous t-conorm as a generalization of fuzzy metric space. Gahler [10] introduced 

and studied the concept of 2-metric spaces in a series of his papers. Iseki et. al. [13] investigated, for the first 

time, contraction type mappings in 2-metric spaces. In 2002 Sharma [18] introduced the concept of fuzzy 2- 

metric spaces. Mursaleen et. al. [18] introduced the concept of intuitionistic fuzzy 2-metric space.  Sharma, 

Sharma and Iseki [25] studied for the first time contraction type mappings in 2-metric spaces.  

 

The aim of this paper is to define a new property that generalize the concept of non-compatible 

mappings and give some common fixed point theorems in Intutionistic fuzzy 2-metric space under strict 

contractive conditions. We extend results of Sharma and Bamboria [23].  
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2. Preliminaries 

Definition 2.1 [24]. A binary operation * :[0,1] [0,1] [0,1] [0,1]   is called a continuous t-norm if ([0,1],*) is 

an abelian topological monoid  with unit 1 such that a1*b1*c1    a2 *b2 *c2  whenever a1    a2 , b1    b2 , c1   

c2 for all a1 ,a2 ,b1 , b2 and c1 , c2  are in [0,1]. 

 

Definition 2.2 [10]. Let X be a non-empty set. A real valued function d on X ×X × X is said to be a 2-metric on 

X if 

(a) For given distinct elements x, y of X, there exists an element z of X such that d(x, y, z) = 0, 

(b) d(x, y, z) = 0 when atleast two of x, y, z are equal, 

(c) d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z in X, 

(d) d(x, y, z) ≤ d(x, y,w) +d(x,w, z)+ d(w, y, z) for all x, y, z,w in X. 

The pair (X, d) is then called a 2-metric space. 

 

Example -2.1 : Let X=R
3 

 is a 2-metric such that d(x,y,z)= the area of  a traiangle spanned by x,y,z, which may 

be given explicitly by the formula 

d(x,y,z)=│x1(y2z3-z2y3)-x2(y1z3-y3z1)+x3(y1z2-y2z1)│ 

where x=(x1 , x2, x3)   , ,y=(,y1 , ,y2, ,y3)   and z=(z1 , z2, z3)    

 

Definition 2.3[24]: The 3-tuple  (X,M,*) is called a Fuzzy 2-metric space if X is an arbitrary set, * is a 

continuous t-norm and M is a fuzzy set in  X
3 

× [0, ) satisfying the following conditions : for all x,y,z,u  X 

and t1,t2 ,t3  >  0. 

(F2M-1)         M(x,y,z,0) = 0  ,
      

 

(F2M-2)       M(x,y,z,t) = 1,  t > 0 and when at least two of the three points   are equal, 

(F2M-3)       M(x,y,z,t) = M(x,z,y,t)  =  M(y,z,x,t),           ( Symmetry about three variables) 

(F2M-4)      M(x,y,z,t1 + t2 +t3)      M(x,y,u,t1)* M(x,u,z,t2)* M(u,y,z,t3)  

(This corresponds to tetrahedron inequality in 2-metric space ) 

The function value M(x,y,z,t) may be interpreted as the probability that the area of triangle is less than t. 

(F2M-5)     M(x,y,z, .):[0,1)  [0,1] is left continuous. 

(F2M-6)    limt   M(x,y,a, t)  =  1  for all x,y,a    X . 

 

Example 2.2 [24] . Let (X,d) be a 2-metric space . Define a*b = ab (or a*b = min{a,b}) and  for all  x,y  X 

and t > 0, 

                                M( , , , )=
d( , , )

t
x y a t

t x y a
                                                   (1.a)

    
 

Then (X,M,*) is a fuzzy 2-metric space . We call this fuzzy metric M induced by the metric d the standard fuzzy 

metric . 

 

Remark 2.1 .  Since * is continuous, it follows from (FM-4) that the limit of the sequence in FM-space  is 

uniquely determined.  

 

Definition-2.4: A  5-tuple (X, M, N, *, ⟡) is said to be an intuitionistic fuzzy metric space if X is an arbitrary 

set, * is a continuous t-norm, ⟡ is a continuous t-conorm and M, N are fuzzy sets on X
2
 × (0, ∞) satisfying the 

following conditions: for all x, y, z  X, s, t > 0, 

(IFM-1) M(x, y, t) + N(x, y, t) ≤ 1 

(IFM-2) M(x, y, t) > 0 

(IFM-3) M(x, y, t) = 1 if and only if x = y 

(IFM-4) M(x, y, t) = M(y, x, t) 

(IFM-5) M(x, y, t) *M(y, z, s) ≤ M(x, z, t + s) 
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(IFM-6) M(x, y, .) : (0, ∞) → (0, 1] is continuous 

(IFM-7) N(x, y, t) > 0 

(IFM-8) N(x, y, t) = 0 if and only if x = y 

 (IFM-9) N(x, y, t) = N(y, x, t) 

(IFM-10)  N(x, y, t) ⟡N(y, z, s) ≥ N(x, z, t + s) 

(IFM-11) N(x, y,.): (0,∞) → (0, 1] is continuous 

Then (M, N) is called an Intuitionistic fuzzy metric on X. 

Note:  M(x, y, t) and N(x, y, t) denote the degree of nearness and the degree of non nearness between x and y 

with respect to ‘t’ respectively. 

 
 
Definition 2.5. A  5-tuple (X, M, N, *, ◊) is said to be an intuitionistic fuzzy2 metric space if X is an y non 

empty arbitrary set, * is a continuous t-norm, ◊ is a continuous t-conorm and M, N are fuzzy sets on X
3
 × (0, ∞) 

satisfying the following conditions: for all x, y, z ,w  X,  r ,s, t > 0 

(IF2M-1) M(x, y,z, t) + N(x, y,z, t) ≤ 1 

(IFM-2)  For given distinct elements x, y,z  of X, there exists an element z of X such that  M(x, y,z, t) > 0  

(IF2M-3) M(x, y, z, t) = 1 if atleast two of x,y,z of X are  equal ( i.e. either x=y or y=z or z=x) 

(IF2M-4) M(x, y, z, t) = M(x,z, y, t) = M(y,z, x, t) 

(IF2M-5) M(x, y, z. r+s+t) ≥M (x,y,w,r )*M(x,w, z, s) * M(w,y,z s) 

(IF2M-6) M(x, y,z .) : (0, ∞) → (0, 1] is continuous 

(IF2M-7) N(x, y,z, t) < 0 

(IF2M-8) N (x, y, z, t) = 0 if atleast two of x,y,z of X are  equal ( i.e. either x=y or y=z or z=x) 

 (IF2M-9) N(x, y, z, t) = N(x,z, y, t) = N(y,z, x, t) 

 (IF2M-10)  N(x, y, z. r+s+t) ≥N (x,y,w,r )*N(x,w, z, s) * N(w,y,z s)  

(IF2M-11) N(x, y,z, .): (0,∞) → (0, 1] is continuous 

Then (M, N) is called an Intuitionistic fuzzy2 metric on X and denoted by (M,N)2. 

Note:  M(x, y,z, t) and N(x, y, z,t) denote the degree of nearness and the degree of non nearness between x and 

y with respect to ‘t’ respectively. 

 

Example :  Let (X,d) is a 2- metric space. Denote a*b=ab and a◊b= min{1,a+b} for all a,b [0,1] and Md and 

Nd  be fuzzy sets on X
3
 × (0, ∞) defined by   

dM ( , , , )
d( , , , )

n

n

ht
x y z t

ht m x y z t
 and d

d( , , , )
N ( , , , )

d( , , , )n

x y z t
x y z t

k t m x y z t
 

For all h,k, m,n  R
+
 . Then (X, Md, Nd, *, ◊)is IF2M – space. 

 
Definition2.6:  Let (X, M, N, *, ◊) is an intuitionistic fuzzy2 metric space. 

(a) A sequence {xn}  in IF2M-space X is said to be convergent to a point 

x  X (denoted by limn xn = x or xn  x) if for any k  (0, 1) and t>0, there exist n0 N such that for all n≥n0 

and a X, M( xn, x,a,t)>1-k  and N( xn, x,a,t)< k .  

That is  limn  M( xn, x,a,t)=1 and limn  N( xn, x,a,t)=0 for all a X and t>0. 

 (b) A sequence {xn}  in IF2M-space X is said to be Cauchy sequence if for any k  (0, 1) and t>0, there exist  

n0 N such that for all m, n≥n0 and a X, M( xm, xn,a,t)>1-k  and N(xm, xn,a,t)< k . That is  limn  M(xm, xn 

,a,t)=1 and limn  N(xm, xn,a,t)=0 for all a X and t>0. 

 (c) The IF2M-space X is said to be complete if and only if every Cauchy sequence is convergent. 

 

Definition 2.7 :. A pair of mappings A and S is called weakly compatible in an Intutionistic fuzzy 2-metric 

space  if they commute at coincidence points. ; i.e., if Tu = Su for some u  X, then TSu = STu. 
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Definition 2.8 :  Let S and T be two self mappings of an Intuitionistic fuzzy2 metric space (X, M, N, *, ⟡)  . 

We say that S and T satisfy the property (S-B) if there exists a sequence {xn} in X such that lim n   Sxn = lim n 

  Txn = z  for some z  X. 

Example 2.2.:  Let X = [0, +∞). Define S, T: X→ X by T
5

x
x   and 

3
S

5

x
x , for all x in X. Consider the 

sequence {xn} = {1/n}. Clearly lim n   Sxn = lim n   Txn = 0. Then S and T satisfy the property (S-B). 

 

Lemma  2.1[22] . For all x,y  X, M(x,y,z, .) is nondecreasing and N(x,y,z, .) is non increasing. 

 

Lemma 2.2[22]: If, for all x,y,a  X , t > 0 and for a number k (0,1), 

                           M(x,y,a,kt)    M(x,y,a, t)   and  N(x,y,a,kt)  ≤  N(x,y,a, t)     

then x = y.  

Definition 2.9 :  Let S and T be two self mappings of an Intuitionistic fuzzy metric space (X, M, N, *, ⟡)  . We 

say that S and T satisfy the property (S-B) if there exists a sequence {xn} in X such that  

lim n   Sxn = lim n   Txn = z  for some z  X. 

Example 2.3.:  Let X = [0, +∞). Define S, T: X→ X by T
5

x
x   and 

3
S

5

x
x , for all x in X. Consider the 

sequence {xn} = {1/n}. Clearly lim n   Sxn = lim n   Txn = 0. Then S and T satisfy the property (S-B). 

Example 2.4: Let X = [2, + ). Define S, T : X  X  by Tx = x + 1/2 and Sx = 2x + 1/2,  x  X. 

 

Suppose property (S-B) holds; then there exists in X a sequence {xn} satisfying  

  lim n   Sxn = lim n   Txn = z for some z  X. 

Therefore 
  

lim n   xn = z – 1/2
 

and  lim n   xn = (2z – 1) / 4. 

Then z = 1/2, which is a contradiction since 1/2  X. Hence S and T do not satisfy the property (S-B). 

 

3 Main Results 

 

Theorem 3.1 .Let  (X, M, N, *, ◊) is an intuitionistic fuzzy2 metric space with t- norm  t * t  t  and t- co norm t 

◊ t ≤ t for some  t  [0, 1] and the condition (IF2M-3) and (IF2M-8). Let A, B and S be self mappings of X  into 

itself such that 

(3.1) AX  SX and BX  SX, 

(3.2) (A, S) or (B, S) satisfies the property (S-B), 

(3.3) there exists a number k  (0, 1) such that 

M (Ax, By,a, kt) > M (Ax, Sx,a, t) * M (Sx, By,a, t)   

and N (Ax, By,a, kt) < N (Ax, Sx,a, t) * N (Sx, By,a, t)    for all x, y,a  X and Ax  By 

(3.4) (A, S) and (B, S) are weakly compatible, 

(3.5) one of AX, BX or SX is a closed subset of X. 

Then A, B and S have a unique common fixed point in X. 

 

Proof  .  Suppose that (B, S) satisfies the property (S-B). Then there exists a sequence {xn} in X such that 

  limn  Bxn = lim n  Sxn = z for some z  X. 

Since BX  SX, there exists in X a sequence {yn} such that Bxn = Syn. Hence limn  Syn = z. 

Let us show that limn  Ayn = z. Indeed, in view of (3.3), we have  

  M(Ayn, Bxn,a,  kt)  >  M(Ayn, Syn,a, t) * M(Syn, Bxn,a, t) 

           > M(Ayn, Bxn,a, t) * M(Byn, Bxn,a, t)  

               > M(Ayn, Bxn,a, t) * 1 

    M(Ayn, Bxn,a, kt)  > M(Ayn, Bxn,a, t) 
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And  

N(Ayn, Bxn,a,  kt)  <  N(Ayn, Syn,a, t) ◊N(Syn, Bxn,a, t) 

           < N(Ayn, Bxn,a, t) ◊ N(Byn, Bxn,a, t)  

               < N(Ayn, Bxn,a, t) ◊ 0 

  N(Ayn, Bxn,a, kt)  < N(Ayn, Bxn,a, t) 

Therefore by Lemma 2.2, we deduce that limn   Ayn = z.  

Suppose SX is a closed subset of X. Then z = Su for some u  X. Subsequently, we have 

   limn   Ayn = limn   Bxn = limn  Sxn = Su 

By (3.3), we have  

  M (Au, Bxn,a, kt) > M (Au, Su,a, t) * M (Su, Bxn,a, t) 

And   N (Au, Bxn,a, kt) < N (Au, Su,a, t) ◊ N (Su, Bxn,a, t) 

Letting n , we obtain 

  M (Au, Su,a, kt) > M (Au, Su,a, t) * M (Su, Su,a, t) 

           > M (Au, Su,a, t) * 1 

           M (Au, Su,a, kt) > M (Au, Su,a,  t) 

And           N (Au, Su,a, kt) < N (Au, Su,a, t) ◊ N (Su, Su,a, t) 

       < N (Au, Su,a, t) ◊ 0 

           N (Au, Su,a, kt) < N (Au, Su,a,  t) 

Therefore by Lemma 2.2, we have Au = Su. 

The weak compatibility of A and S implies that ASu = SAu and then   AAu = ASu = SAu = SSu. 

On the other hand, since AX  SX, there exists a point v  X such that Au = Sv. We claim that Sv = Bv. 

Using (3.3), we have  

M (Au, Bv,a, kt) > M (Au, Su,a, t) * M (Su, Bv,a, t) 

        > M (Au, Au,a,  t) * M (Au, Bv,a, t) 

        > 1 * M (Au, Bv,a, t) 

  M (Au, Bv,a, kt) > M (Au, Bv,a, t) 

And   N (Au, Bv,a, kt) < N (Au, Su,a, t) ◊ N (Su, Bv,a, t) 

        < N (Au, Au,a,  t) ◊ N (Au, Bv,a, t) 

        < 0 ◊ N (Au, Bv, a, t) 

  N (Au, Bv, a, kt) < N (Au, Bv, a, t) 

Therefore by Lemma 2.2, we have Au = Bv. 

Thus Au = Su = Sv = Bv. The weak compatibility of B and S implies 

BSv = SBv and then BBv = BSv = SBv =SSv.  

Let us show that Au is a common fixed point of A, B and S. In view of (3.3), it follows that  

  M (AAu, Bv,a, kt) > M (AAu, SAu,a, t) * M (SAu, Bv,a, t) 

           > M (AAu, AAu,a, t) * M (AAu, Au,a, t) 

           > 1 * M (AAu, Au,a, t) 

  M (AAu, Au,a, kt) > M (AAu, Au,a, t). 

And    N (AAu, Bv,a, kt) < N (AAu, SAu,a, t) ◊ N (SAu, Bv,a, t) 

          < N (AAu, AAu,a, t) ◊ N (AAu, Au,a, t) 

         <0 ◊ N (AAu, Au,a, t) 

  N (AAu, Au,a, kt) < N (AAu, Au,a, t). 

Therefore by Lemma 2.2, we have AAu = Au = SAu and Au is a common fixed point of A and S. Similarly, we 

prove that Bv is a common fixed point of B and S. Since Au = Bv, we conclude that Au is a common fixed 

point of A, B and S. 

If Au = Bu = Su = u and Av = Bv = Sv = v, then by (3.3), we have 

  M(Au, Bv,a, kt) > M(Au, Su,a, t) * M(Su, Bv,a, t) 

M(u, v,a, kt) > M(u, u,a, t) * M(u, v,a, t) 

M(u, v,a, kt) > 1 * M(u, v,a, t)  

M(u, v,a, kt) > M(u, v,a, t). 
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and 

N(Au, Bv,a, kt) < N(Au, Su,a, t) ◊ N(Su, Bv,a, t) 

N(u, v,a, kt) < N(u, u,a, t) ◊ N(u, v,a, t) 

N(u, v,a, kt) < 0 ◊ N(u, v,a, t)  

N(u, v,a, kt) < N(u, v,a, t). 

By Lemma 2.2, we have u = v and the common fixed point is unique. This completes the proof of the theorem. 

 

Theorem 3.2 : Let  (X, M, N, *, ◊) is an intuitionistic fuzzy2 metric space with t- norm  t * t  t  and t- co norm 

t ◊ t ≤ t for some  t  [0, 1] and the condition (IF2M-3) and (IF2M-8). Let A, B, S and T be self-mappings of X 

into itself such that 

(3.6) AX  TX and BX  SX, 

(3.7) (A, S) or (B, T) satisfies the property (S-B), 

(3.8) there exists a number k  (0, 1), such that  

 [1 + pM (Sx, Ty,a, kt)] * M (Ax, By,a, kt) 

           p [M (Ax, Sx,a, kt) * M (By, Ty,a, kt) + M (Ax, Ty,a, kt)           

            * M (By, Sx,a, kt)] + M (Sx, Ty,a, t) * M (Ax, Sx,a, t)  

              * M (By, Ty,a, t) * M (By, Sx,a, t) * M (Ax, Ty,a, (2 - ) t)   

[1 + pN (Sx, Ty,a, kt)] ◊ N (Ax, By,a, kt) 

       ≤ p [N (Ax, Sx,a, kt) ◊ N (By, Ty,a, kt) + N (Ax, Ty,a, kt)           

             ◊ N (By, Sx,a, kt)] + N (Sx, Ty,a, t) ◊ N (Ax, Sx,a, t)  

                ◊N (By, Ty,a, t) ◊ N (By, Sx,a, t) ◊ N (Ax, Ty,a, (2 - ) t)  for all x, y,a  X, p 

 0 and   (0, 2). 

(3.9) The pairs (A, S) and (B, T) are weakly compatible, 

(3.10)  One of AX, BX, SX or TX is a closed subset of X.  

Then A, B, S and T have a unique common fixed point in X. 

 

Proof  . Suppose that (B, T) satisfies the property (S-B). Then there exists a sequence {xn} in X such that 

limn  Bxn = limn  Txn = z for some z  X. 

Since BX  SX, there exists in X a sequence {yn} such that Bxn = Syn. Hence limn  Syn = z. Let us show that 

limn  Ayn = z. Indeed, in view of (3.8)  for     = 1 – q, q  (0, 1), we have   

[1 + pM(Syn, Txn,a, kt)] * M(Ayn, Bxn,a, kt) 

                 p [M(Ayn, Syn,a, kt) * M(Bxn, Txn,a, kt) + M(Ayn, Txn,a,kt)             

                   * M(Bxn, Syn,a, kt)] + M( Syn, Txn,a, t) * M(Ayn, Syn,a, t) 

                     * M(Bxn, Txn,a, t) * M(Bxn, Syn,a, t) * M( Ayn, Txn,a, (2 - )t) 

 M(Ayn, Bxn,a, kt) + p [M(Syn, Txn,a, kt) * M(Ayn, Bxn,a, kt)] 

≥ p [M(Ayn, Syn,a, kt) * M(Bxn, Txn,a, kt) + M(Ayn, Txn,a, kt)             

* M(Bxn, Syn,a, kt)] + M( Syn, Txn,a, t) * M(Ayn, Syn,a, t) 

                  * M(Bxn, Txn,a, t) * M(Bxn, Syn,a, t) * M( Ayn, Txn,a, (1 + q)t) 

  

M(Ayn, Bxn,a, kt) + p [M(Bxn, Txn,a, kt) * M(Ayn, Bxn,a, kt)] 

               p [M(Ayn, Bxn,a, kt) * M(Bxn, Txn,a, kt) + M(Ayn, Txn,a, kt)              

                    * M(Bxn, Bxn,a, kt)] + M( Bxn, Txn,a, t) * M(Ayn, Bxn,a, t) 

  * M(Bxn, Txn,a, t) * M(Bxn, Bxn,a, t) *M( Ayn, Txn,Bxn, t) 

   *M( Ayn, Bxn, a, qt/2)  * M(Bxn, Txn,a, qt/2) 

And 

[1 + pN(Syn, Txn,a, kt)] ◊ N(Ayn, Bxn,a, kt) 

                ≤ p [N(Ayn, Syn,a, kt) ◊ N(Bxn, Txn,a, kt) + N(Ayn, Txn,a,kt)             

                    ◊ N(Bxn, Syn,a, kt)] + N( Syn, Txn,a, t) ◊ N(Ayn, Syn,a, t) 

                    ◊ N(Bxn, Txn,a, t) ◊ N(Bxn, Syn,a, t) ◊ N( Ayn, Txn,a, (2 - )t) 

 N(Ayn, Bxn,a, kt) + p [N(Syn, Txn,a, kt) ◊ N(Ayn, Bxn,a, kt)] 

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 
ISSN 2229-5518  

1119

IJSER © 2017 
http://www.ijser.org 

IJSER



SOME COMMON FIXED POINT THEOREMS IN INTUTIONISTIC FUZZY 2-METRIC SPACES 

UNDER STRICT CONTRACTIVE CONDITIONS  

7 

 

≤ p [N(Ayn, Syn,a, kt) ◊ N(Bxn, Txn,a, kt) + N(Ayn, Txn,a, kt)             

◊ N(Bxn, Syn,a, kt)] + N( Syn, Txn,a, t) ◊ N(Ayn, Syn,a, t) 

                   ◊ N(Bxn, Txn,a, t) ◊ N(Bxn, Syn,a, t) ◊ N( Ayn, Txn,a, (1 + q)t) 

N(Ayn, Bxn,a, kt) + p [N(Bxn, Txn,a, kt) ◊ N(Ayn, Bxn,a, kt)] 

                ≤ p [N(Ayn, Bxn,a, kt) ◊ N(Bxn, Txn,a, kt) + N(Ayn, Txn,a, kt)              

                       ◊ N(Bxn, Bxn,a, kt)] + N( Bxn, Txn,a, t) ◊ N(Ayn, Bxn,a, t) 

   ◊ N(Bxn, Txn,a, t) ◊ N(Bxn, Bxn,a, t) ◊N( Ayn, Txn,Bxn, t) 

    ◊N( Ayn, Bxn, a, qt/2)  ◊ N(Bxn, Txn,a, qt/2) 

Thus it follows that  

M(Ayn, Bxn,a, kt)  M(Bxn,Txn,a, t)*M(Ayn,Bxn,a,qt/2)*M(Bxn,Txn,a,qt/2) 

And N(Ayn, Bxn,a, kt) ≤ N(Bxn,Txn,a, t)◊N(Ayn,Bxn,a,qt/2)◊N(Bxn,Txn,a,qt/2) 

Since the t-norm *  and t-conorm ◊ are  continuous and M  , N are also is continuous, letting  

q  1, we have  

M(Ayn, Bxn,a, kt)    M(Bxn, Txn,a, t)  * M(Ayn, Bxn,a, t/2)  

And N(Ayn, Bxn,a, kt)  ≤  N(Bxn, Txn,a, t)  ◊ N(Ayn, Bxn,a, t/2)  

It follows that  

limn  M(Ayn, Bxn,a, kt)      limn   M(Ayn, Bxn,a, t)   

and limn  N(Ayn, Bxn,a, kt)  ≤    limn   N(Ayn, Bxn,a, t)   

and we deduce that limn  Ayn = z. 

Suppose SX is a closed subset of X. Then z = Su for some u  X. Subsequently, we have 

  limn  Ayn = limn  Bxn = limn  Txn = limn  Syn = Su. 

By (3.8) with  =1, we have 

[1 + pM(Su, Txn,a, kt)] * M(Au, Bxn,a, kt) 

                      p [M(Au, Su,a, kt) * M(Bxn, Txn,a, kt) + M(Au, Txn,a,kt)              

                             * M(Bxn, Su,a, kt)] + M( Su, Txn,a, t) * M(Au, Su,a, t) 

  * M(Bxn, Txn,a, t) * M(Bxn, Su,a, t) * M(Au, Txn,a, t) 

 M(Au, Bxn,a, kt) + p[M(Su, Txn,a, kt)] * M(Au, Bxn,a, kt)] 

                      p[M(Au, Su,a,kt) * M(Bxn, Txn,a,kt) + M(Au, Txn,a,kt)                 

                            * M(Bxn, Su,a, kt)] + M( Su, Txn,a, t) * M(Au, Su,a, t) 

  * M(Bxn, Txn,a, t) * M(Bxn, Su,a, t) * M(Au, Txn,a, t) 

Taking the limn , we have  

M(Au, Su,a, kt)  p[ (Au, Su,a, kt) * M(Su, Su,a,kt)] + M(Su, Su,a,t)  * M (Au, Su,a, t)  

* M (Su, Su,a, t) * M (Su, Su,a, t)  * M (Au, Su,a, t)  

 

And  

[1 + pN(Su, Txn,a, kt)] ◊ N(Au, Bxn,a, kt) 

                     ≤ p [N(Au, Su,a, kt) ◊ N(Bxn, Txn,a, kt) + N(Au, Txn,a,kt)              

                           ◊ N(Bxn, Su,a, kt)] + N( Su, Txn,a, t) ◊ N(Au, Su,a, t) 

 ◊ N(Bxn, Txn,a, t) ◊ N(Bxn, Su,a, t) ◊ N(Au, Txn,a, t) 

 

 N(Au, Bxn,a, kt) + p[N(Su, Txn,a, kt)] ◊ N(Au, Bxn,a, kt)] 

                    ≤p[N(Au, Su,a,kt) ◊ N(Bxn, Txn,a,kt) + N(Au, Txn,a,kt)                 

                            ◊ N(Bxn, Su,a, kt)] + N( Su, Txn,a, t) ◊ N(Au, Su,a, t) 

  ◊ N(Bxn, Txn,a, t) ◊ N(Bxn, Su,a, t) ◊ N(Au, Txn,a, t) 

Taking the limn , we have  

N(Au, Su,a, kt) ≤ p[ N(Au, Su,a, kt) ◊ N(Su, Su,a,kt)] + N(Su, Su,a,t)◊ N (Au, Su,a, t)  

◊ N (Su, Su,a, t) ◊ N (Su, Su,a, t) ◊ N (Au, Su,a, t)  

These  gives 

M (Au, Su,a, kt)    M (Au, Su,a, t)  and  N (Au, Su,a, kt)  ≤  N (Au, Su,a, t)   
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Therefore by Lemma 2.2, we have Au = Su. The weak compatibility of A and S implies that ASu = SAu and 

then AAu = ASu = SAu = SSu. On the other hand, since AX  TX, there exists a point v  X such that Au = 

Tv. We claim that   Tv = Bv using (3.8) with  = 1, we have 

[1 + pM(Su, Tv,a, kt)] * M(Au, Bv,a, kt)  

                       p[M(Au, Su,a, kt) * M(Bv, Tv,a, kt) + M(Au, Tv,a, kt)             

                          * M(Bv, Su,a, kt)] + M(Su, Tv,a, t) * M(Au, Su,a, t) 

     * M(Bv, Tv,a, t) * M(Bv, Su,a, t) * M(Au, Tv,a, t) 

M(Au, Bv,a, kt) + p[M(Su, Tv,a, kt) * M(Au, Bv,a, kt)] 

                    p[M(Au, Su,a, kt) * M(Bv, Tv,a, kt) + M(Au, Tv,a, kt)             

                        * M (Bv, Su,a, kt)] + M (Su, Tv,a, t) * M (Au, Su,a, t) 

                         * M (Bv, Tv,a, t) * M (Bv, Su,a, t) * M (Au, Tv,a, t) 

And  

[1 + pN(Su, Tv,a, kt)] ◊  N(Au, Bv,a, kt)  

                     ≤  p[N(Au, Su,a, kt) ◊  N(Bv, Tv,a, kt) + N(Au, Tv,a, kt)             

                          ◊  N(Bv, Su,a, kt)] + N(Su, Tv,a, t) ◊  N(Au, Su,a, t) 

     ◊  N(Bv, Tv,a, t) ◊  N(Bv, Su,a, t) ◊  N(Au, Tv,a, t) 

N(Au, Bv,a, kt) + p[N(Su, Tv,a, kt) ◊  N(Au, Bv,a, kt)] 

              ≤ p[N(Au, Su,a, kt) ◊  N(Bv, Tv,a, kt) + N(Au, Tv,a, kt)             

                        ◊  N (Bv, Su,a, kt)] + N (Su, Tv,a, t) ◊  N (Au, Su,a, t) 

                         ◊  N (Bv, Tv,a, t) ◊  N (Bv, Su,a, t) ◊  N (Au, Tv,a, t) 

 

Thus it follows that  

M(Au, Bv,a, kt)     M(Au, Bv,a, t)  and N(Au, Bv,a, kt)  ≤   N(Au, Bv,a, t)  

 

Therefore by Lemma 2.2, we have Au = Bv. 

Thus Au = Su = Tv = Bv. The weak compatibility of B and T implies that     BTv = TBv and TTv = TBv = BTv 

= BBv. Let us show that Au is a common fixed point of A, B, S and T. In view of (3.8) with  = 1, we have 

[1 + pM(SAu, Tv,a, kt)] * M(AAu, Bv,a, kt)  

≥ p[M(AAu, SAu,a, kt) * M(Bv, Tv,a, kt) + M(AAu, Tv,a, kt)    

     * M(Bv, SAu,a, kt)] + M(SAu, Tv,a, t) * M(AAu, SAu,a, t) 

* M(Bv, Tv,a, t) * M(Bv, SAu,a, t) * M(AAu, Tv,a, t) 

M(AAu, Bv,a, kt) + p[M(SAu, Tv,a, kt) * M(AAu, Bv,a, kt)] 

                   p[M(AAu, SAu,a, kt) * M(Bv, Tv,a, kt) + M (AAu, Tv,a, kt)  

                      * M(Bv, SAu,a, kt)] + M(SAu, Tv,a, t) * M(AAu, SAu,a, t) 

     * M(Bv, Tv,a, t) * M(Bv, SAu,a, t) * M(AAu, Tv,a, t) 

M(AAu, Au,a, kt) + p[M(AAu, Au,a, kt) * M(AAu, Au,a, kt)] 

 p[M(AAu, AAu,a, kt) * M(Au, Au,a, kt) + M(AAu, Au,a, kt)        

      * M(Au, AAu,a, kt)] + M(AAu, Au,a, t) * M(AAu, AAu,a, t) 

                          * M(Au, Au,a, t) * M(Au, AAu,a, t) * M(AAu, Au,a, t) 

[1 + pN(SAu, Tv,a, kt)] ◊  N(AAu, Bv,a, kt)  

  ≤ p[N(AAu, SAu,a, kt) ◊  N(Bv, Tv,a, kt) + N(AAu, Tv,a, kt)    

   ◊  N(Bv, SAu,a, kt)] + N(SAu, Tv,a, t) ◊  N(AAu, SAu,a, t) 

◊  N(Bv, Tv,a, t) ◊  N(Bv, SAu,a, t) ◊  N(AAu, Tv,a, t) 

N(AAu, Bv,a, kt) + p[N(SAu, Tv,a, kt) ◊  N(AAu, Bv,a, kt)] 

                  ≤  p[N(AAu, SAu,a, kt) ◊  N(Bv, Tv,a, kt) + N (AAu, Tv,a, kt)  

                      ◊  N(Bv, SAu,a, kt)] + N(SAu, Tv,a, t) ◊  N(AAu, SAu,a, t) 

     ◊  N(Bv, Tv,a, t) ◊  N(Bv, SAu,a, t) ◊  N(AAu, Tv,a, t) 

N(AAu, Au,a, kt) + p[N(AAu, Au,a, kt) ◊  N(AAu, Au,a, kt)] 

 ≤ p[N(AAu, AAu,a, kt) ◊  N(Au, Au,a, kt) + N(AAu, Au,a, kt)        

      ◊  N(Au, AAu,a, kt)] + N(AAu, Au,a, t) ◊  N(AAu, AAu,a, t) 
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                          ◊  N(Au, Au,a, t) ◊  N(Au, AAu,a, t) ◊  N(AAu, Au,a, t) 

Thus it follows that 

M(AAu, Au,a kt)        M(AAu, Au,a, t) and N(AAu, Au,a kt)    ≤    N(AAu, Au,a, t) 

 

Therefore by Lemma 2.2, we have Au = AAu = SAu and Au is a common fixed point of A and S. 

 

Similarly, we prove that Bv is a common fixed point of B and T. Since Au = Bv, we conclude that Au is a 

common fixed point of A, B, S and T. 

If Au = Bu = Su = Tu = u and Av = Bv = Sv = Tv = v, then by (3.8) with  = 1, we have 

[1 + pM(Su, Tv,a, kt)] * M(Au, Bv,a, kt)  

 p[M(Au, Su,a, kt) * M(Bv, Tv,a, kt) + M(Au, Tv,a, kt)             

       * M(Bv, Su,a, kt)] + M(Su, Tv,a, t) * M(Au, Su,a, t) 

                        * M(Bv, Tv,a, t) * M(Bv, Su,a, t) * M(Au, Tv,a, t) 

 

M(u, v,a, kt) + p[M(u, v,a, kt) * M(u, v,a, kt)] 

                            p[M(u, u,a, kt) * M(v, v,a, kt) + M(u, v,a, kt)  

   * M(v, u,a, kt)] + M(u, v,a,t) * M(u, u,a, t) 

          * M(v, v,a, t) * M(v, u,a, t) * M(u, v,a, t)  

[1 + pN(Su, Tv,a, kt)] ◊  N(Au, Bv,a, kt)  

 p[N(Au, Su,a, kt) ◊  N(Bv, Tv,a, kt) + N(Au, Tv,a, kt)             

    ◊  N(Bv, Su,a, kt)] + N(Su, Tv,a, t) ◊  N(Au, Su,a, t) 

                        ◊  N(Bv, Tv,a, t) ◊  N(Bv, Su,a, t) ◊  N(Au, Tv,a, t) 

N(u, v,a, kt) + p[N(u, v,a, kt) ◊  N(u, v,a, kt)] 

                           p[N(u, u,a, kt) ◊  N(v, v,a, kt) + N(u, v,a, kt)  

   ◊  N(v, u,a, kt)] + N(u, v,a,t) ◊  N(u, u,a, t) 

     ◊  N(v, v,a, t) ◊  N(v, u,a, t) ◊  N(u, v,a, t)  

This gives    

M(u, v,a, kt)      M(u, v,a, t)  and N(u, v,a, kt)   ≤   N(u, v,a, t) 

By Lemma 2.2, we have u = v and the common fixed point is a unique. This completes the proof of the theorem. 

If we put p = 0, we get the following result: 

 

Corollary 3.1 . Let  (X, M, N, *, ◊) is an intuitionistic fuzzy2 metric space with t- norm  t * t  t  and t- co norm 

t ◊ t ≤ t for some  t  [0, 1] and the condition (IF2M-3) and (IF2M-8). Let A, B, S and T be self-mappings of X 

into itself such that 

(3.11) AX  TX and BX  SX, 

(3.12) (A, S) or (B, T) satisfies the property (S-B), 

(3.13) there exists a number k  (0, 1), such that 

 

M(Ax, By,a, kt)    M(Sx, Ty,a, t) * M(Ax, Sx,a, t) * M(By, Ty,a, t)  

                                     * M(By, Sx,a, t) * M(Ax, Ty,a, (2 - ) t)   

N(Ax, By,a, kt)  ≤  N(Sx, Ty,a, t) ◊  N(Ax, Sx,a, t) ◊  N(By, Ty,a, t)  

                                   ◊  N(By, Sx,a, t) ◊  N(Ax, Ty,a, (2 - ) t)   

for all x, y,a  X and   (0, 2). 

(3.14) (A, S) and (B, T) are weakly compatible, 

(3.15)  one of AX, BX, SX or TX is a closed subset of X.  

Then A, B, S and T have a unique common fixed point in X. 
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